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1. Introduction

Research efforts on the development of the so-called large eddy interaction model

(LEIM) have been devoted to the following:

(a) setting up of dynamical equations for velocity and scalar quantities and

correlations;

(b) examining methods of solution of the dynamical equations with minimal

modeling at the spectral level; and

(c) examining data sets on mixing layers that are suitable for utilizing the LEIM

as a metric for determining transport and production of turbulence quantities.

The two-dlmensional mixing layers under consideration fall under two categories:

(i) the mixing fluids differ in velocity and density, the latter due to composition; and

(ii) the mixing fluids differ in velocity and temperature. It is assumed that the fluids

are incompressible and non-reactive. Thus, the dynamical equations for velocity and

scalar fluctuations and correlations are common for density and temperature.

The principal modeling required in the use of dynamical equations is for eddy-

eddy interactions. Alternative schemes of modeling are then of interest. Regarding

the need for establishing a relation between velocity and temperature fluctuations,

similarity may be invoked. In view of the nature of the LEIM, such similarity is most

effective if invoked at the spectral level between velocity and scalar quantities.

An attempt has been made at setting up a computational program for a

developing mixing layer. There is considerable sensitivity to initial conditions in the

prediction of turbulence quantities, although there is some success in predicting mean

flow development.

In respect of data sets, the two main problems are (i) the lack of adequate

definition of initial conditions and (ii) the lack of data on mean flow development.



These preclude adequate comparison between predictions and experimental data.

1.1. Background

The large eddy interaction hypothesis (LEIH) is based on the work of J. Lumley

(Refs. 1 and 2) on the rational representation of turbulence and its development.

The LEIH rests on two postulates: (i) selected eddies are adequate for representation

of a number of features of turbulence; and (ii) turbulence development in a flow is

the result of the action of mean strain in the presence of eddy-eddy interactions that

constitute turbulent transport processes and of viscous transport.

The application of a model based on LEIH to curved wall boundary layers is

discussed in Refs. 3-6. Other application to channel flows is discussed in Refs. 7-9.

Recent developments on J. Lumley's work are contained in Refs. 10-14.

A general critique on experimental work on mixing layers can be found in Ref. 15.

1.2. Outline of Report

Chapter 2 of the Report deals with the rational representation of turbulence and

its application to mixing layers. The method of obtaining predictions based on the

LEIH model is presented in Chapter 3. An approach to the problem of predicting

mixing layer development utilizing the LEIH is outlined in Chapter 4.

2. THE LEIH AND MODEL DEVELOPMENT

The LEItI is an outcome of J. Lumley's proposal for rational representation of

turbulence (Refs. 1 and 2), which has also been adapted for use by A.A. Townsend

(Ref. 16) with his own formalism. A.A. Townsend had earlier (Ref. 17) proposed that

turbulent shear flows have a "double structure" with a noticeable, well organized

structure called large eddies and a less organized, smaller scale turbulence. The large

eddies are said to contain only a small part of the total kinetic energy, but determine

the turbulent-non-turbulent interface and hence the intermittency. There is expected



to be a large difference between the scale of large eddies and the scales of other

eddies. The effect of the smaller eddies may be visualized as the presence of eddy
/

viscosity. A.A. Townsend was thus able to establish a scheme for determining the

structure of large eddies.

An objective definition for such large eddies has been provided by J. Lumley. The

importance of such a definition is two-fold: (i) it leads to a model for inhomogeneous

flows and (ii) it also provides a rational basis for the recovery of the characteristic,

generally orderly structure of large eddies in various flows based on detailed space-

time based measurements. In other terminology, it represents a means of examining

time-wise unsteady, space-wise steady development of the structure of a given

turbulent flow.

2.1. Notation

In order to make the notation compact and easily recognized, the following is

utilized.

Throughout Cartesian summation notation is employed, where repeated indices

imply that the terms containing them must be summed over all possible coordinate

indices. An overdot ' indicates partial derivative with respect to time and a dot inside

the parenthesis (') indicates that the quantity is a function of whatever are the

relevant coordinates.

The isotroplc tensors are defined by

t50= ! and O, if i = j and otherwise

and

e,jk= 1, -I and O, when ijk form the sequence 123123, 321321 and otherwise.
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Mean velocity, pressure and temperature are denoted by Ui, P and T, while

turbulence velocity, pressureand temperature are denoted by ui, p and 8.

All other symbols and operations are explained locally.

2.2. Application of Proper Orthol_onal Decomposition Theorem

The turbulence problem is posed as one of identifying a structure in a random

vector field. The proper orthogonal decomposition theorem of M. Loeve (Ref. 18) is

invoked for application.

The vector field ui is expanded in terms of a candidate structural quantity,

¢_ , n -----1,2,...etc., and coefficient, c_n, as follows :

u_(.) = z; ,_, 4,,"(.) (2. l)

where, denoting the complex conjugate by ( )*

Ot n _--- lUi(') _n*(°) d(')

(2.2)

and the random coefficients are uncorrelated:

(
O, n ¢ m

OtnOt _

h °'J, n = m (2.3)

It is claimed as a hypothesis that _ is occurring in a recognizable form in a given

ensemble of random vector fields, ui. One considers the quantity, namely

,lO*(°) ui(') d(.)
ot = (2.4)

and its statistics. The best ¢i iS then taken to be that which gives the largest

magnitude of c_ in some average sense, the sign being irrelevant. In other words, ¢i is

selected such that I c_l 2 is maximized. According to the calculus of variations, the
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expansion of (2.1) is then optimal since, on account of [ _[ 2 being maximized, each

term leaves as little as possible of ui(') in the succeeding terms. Notlng that the large

eddies are physically well "separated" from the rest, the first term of the expansion

can be claimed to be the representation of large eddies.

Defining Rij as

Rij(°, ") = ui(o) uj(")

one can write

(2.5)

Rij(., • ') = E hc")q_i¢'0(.) _bj('0 (. ')

It may be noted that in (2.3) X(n} are

Furthermore, ¢!n) are ortho-normal, i.e.,

(2.6)

non-negative and their sum is finite.

Lt'dpi(P)Co) dpi(q)*(o) d(.) -_ _pq (2.7)

This is to say that the structures of various orders have nothing in common with one

another.

Now, one considers the possibility of ui or Rij being homogeneous in certain

coordinate directions and inhomogeneous in the remaining. For example, the vector

field may be homogeneous in x 3 and inhomogeneous in x I and x2, as in a two-

dimensional boundary layer or a two dimensional mixing layer. Then one can invoke

the Harmonic Orthogonal Decomposition Theorem (M. Loeve, Ref. 18) and note that

expansion in harmonic functions is possible in any homogeneous directions, while the

proper orthogonal decomposition applies in the remninb_g.

It is clear that there is a difficulty in a totally homogeneous flowfield. Considering

a wave number-frequency space, the more broadband in wave number and frequency
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is the structure, the less representative will the definition be. On the other hand, if

the flowfleld is totally inhomogeneous, one has to appeal to ¢!1}. In the case that

there is at least one direction in which the field is homogeneous, the flow can be

represented in terms of a denumerable set of motions. The large eddy then is that

organized motion of largest scale in the inhomogeneous directions and possessing the

greatest energy. A strong peak is expected a't a wave number-frequency combination

away from the origin and that corresponds to the large eddy.

2.3. Some Comments

2.3.1. The eddies in the turbulent flowfield are represented in terms of flow quantities

treated as random vector fields and hydrodynamic/thermodynamic quantities, such

as pressure, temperature and concentration, as random fields. Various correlations

between velocities and between velocities and scalars can then be constructed.

Each field is represented in terms of a structure and associated random

coefficients representing amplitudes. Upon decomposition, a flow_cld with some

inhomogeneities can be represented in terms of a denumerable set of eddies, each of

which is rational being optimal in the expansion. Each contains the maximum energy

it can and each is of the largest scale possible. There is no similarity among them.

The largest of them is the large eddy.

2.3.2. As stated earlier, the Orthogonal Decomposition Theorem reduces to the

ttarmonic Decomposition Theorem when the flow field is homogeneous, and also,

when it is stationary or periodic. This implies that in any direction in which the

flow field is homogeneous, stationary or periodic, the flowfield in that direction can be

expressed by Fourier analysis. In the remaining directions, one has to use the Proper

Orthogonal Decomposition Theorem.

J. Lumley points out (Ref. 2) that eigen functions are not confined to one region

of space and time and therefore they cannot correspond to physical eddies as they are



7

usually visualized.

However, he also points out (Refs. 1 and 2) that, following a suggestion of A.

Townsend, one can utilize an extension of the shot-noise-effect expansion of S.O. Rice

(Ref. lg) and obtain an unambiguous representation of eddies. Now, any

homogeneous function may be written in the form, namely

ui(x) = I f(x-x') g(x') dx' (2.8)

where fi is a deterministic function and g is a stochastic function that is white, i.e.

uncorrelated in non-overlapping intervals. Thus, the flow is decomposed into

characteristic eddies, gi, occurring at uncorrelated intervals. One can then use the

extended Campbell Theorem and write

(

RO(_) = ,lf_(x) fj(x+_) ,ix

Taking the Fourier transform, one can express the spectrum as

(2.9)

• o(k) =f_ (2.10)

where (^) indicates the transform.

2.3.3. L. Sirovich (Ref. 20) points out that another method, namely the method of

snapshots or strobes may be utilized in place of the shot-noise method. We shall

return to the alternative method later.

3. DYNAMICS OF LARGE EDDIES

In any turbulent shear flow it is hypothesized that the large eddies interact with

themselves and with all the other eddies in tile presence of mean strain in tile fluid

flow. A dynamical equation can be constructed for any parameter associated with tile

large eddies, wherein a balance is invoked among production, advection, diffusion



and dissipation processes.Turbulence development in the flow, including mean flow

development, is assumedto be governed by the dynamical equation along with other

relevant flow describing equations.

As noted by J. Lumley (Ref. 1), for the completely inhomogeneouscase,

a_ui(o ) = ;k tin) qbiCr")(o) (3.1)

which operation is a consequence of Eqs. 2.1 - 2.3. Substituting Eq. 3.1 into the

Navier-Stokes equations, one obtains a dynamical equation as follows.

¢,("_+U_j¢_ "_+_(") / / =--,,-,j Uj+ E (aZapaq) h(") + E (aZa, aq) h(n).¢i(y)¢j(q) I ri(")+_q_},_> (3.2)

p,q p,q P

¢_(_)= 0 (3.3)

a*p/k (") = r (') (3.4)

Here Ui, p and 7r represent the mean velocity, density and pressure, and n and m

represent the order. Tile first two terms on the left side of Eq. 3.2 represent tile

advective derivative. Tile third term on the left is tile result of intcractlon with tile

mean strain. The next term denotes interaction with all other eddies. Tile two terms

on the right hand side of Eq. 3.2 are related to the pressure gradient and the viscous

action.
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Now, the central problem of Eq. 3.2 isagain the so-calledclosure problem because

of the term denoting eddy-eddy interactions, which requires some form of

approxlmatlon. Several alternativesare as follows,although others may be feasible:

(i) a direct interaction approximation of the type given by R.H. Kraichnan (Ref.

21);

(ii) a random phase approximation of the type given by S.F. Edwards (Ref. 22);

(iii) a type of approximation given by W. Heisenberg (Ref. 23) which, although

proven unsatisfactory in the case of homogeneous turbulence, has shown some

promise in inhomogeneous flows; thus, A.S. Monin and A.M. Yaglom (Ref. 24)

indicate that the higher order elgenfunctlons may be consldered as acting llke a

viscosity on the lower order ones; the hlgher and the lower order terms are

assumed to be suffidently different from each other based on their spectral

separation. This has been pursued extensively in recent times by N. Aubry

(Refs. 10-12); and

(iv) direct modeling of the term on the basis of its relation to turbulence transport

(Refs. 1,2,3 and 7).

It may be recalled again that L. Sirovich follows a slightly different procedure.

3.1. Partially Inhomogeneous Case

In shear flows where there exist approximately homogeneous directions, for

example xl and xs directions while x2 is inhomogeneous, and where the turbulence is

stationary, one can write for the fluctuating field, as stated earlier, the following.
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u, = _ exp [i(kixi + oot)] .ok� ") a, dk I dk3 d_o (3.5)
n

= .If g_ dx' (2.8)

and

f = I¢/i(1) dkl ... (3.6)

It will be observed that Eq. 3.6 denotes the deterministic function. The dynamical

equation for ¢(1) then becomes the following:

t.t.(I)_(l_+ ¢#7 uj + u,j ¢S'_= - p5'_ + ,_,,, ,_.,n._ (3.7)

where Ts is a time scale, proportional to the ratio of turbulent energy to dissipation

rate. It should be pointed out that viscous dissipation is not included in Eqn. 3.7.

Equation 3.7 has the same features as Eq. 3.2.

3.2. Eddy-Eddy Interactions

It is clear from Eq. 3.2 that in incompressible flow, whether or not scalar

quantities are present such as temperature and species concentration, the equations

are closed insofar as pressure and viscous forces are concerned. Of those pressure can

be established by including Poisson's equation. The only term that is unclosed is that

pertaining to eddy-eddy interactions.

First, it is useful to note that Eq. 3.2 is a coupled, infinite set of eigen value

equations. In principle, they should yield the eigenvalues a:apaq/k (n) when solved

simultaneously. The solutions yield moments of higher order in terms of those of

lower order,
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A brief discussionfollows on the modeling of the interaction term.

3.2.1. Lumley's original suggestion

Based on W. Helsenberg's suggestion (Ref. 23), J. Lumley introduced the

hypothesis that ap¢_p) extracts, through some form of viscous action, energy from

aa¢!n), n<p, asa function of time at appropriate scales.One can then write:

* apaq O, ;_a. = p q

and

- a* apaq _bi'p) d)j (q, = [Onp _ij dr _ (n)pT(p) (_)[ff) .or _j(n))] _pq, p,q > n (3.8)

Unfortunately, there is no mechanism for the extraction of energy in the formalism

itself. Therefore, at best one can consider the first mode and write the following.

,_(1) a_a_ 4_(j ) 1 Cl) (v + _ V(r?}) d)(z)q_i(1)+ UijePj(_)+ -_ijUj+ _ ¢j(11= P fro + ia/ (3.9)
I

and

_b( 1)
i,, =0

One introduces in addition tile Poisson equation.

Three important remarks of J. Lumley regarding tile foregoing are as follows.
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(i) The interaction of close wave numbers does not seem to be fully accounted

for. It is of course possible to proceed assuming that there is no correlation between

even close wave numbers.

* g
(ii) The amplitude parameter, namely (sial)/),1 cannot be determined. The

argument is that amplitude may change without a change in structure while the

disturbance remains neutral at the same VW. However, since amplitude change does

cause structural change, one has to adopt some other argument, such as the necessity

of a maximum value of v T, to determine the amplitude factor.

(iii) One could write

ata_/X(') = _,j_(,) (3.10)

where _ is in the nature of a structural constant, a skewness factor.

Equation 3.10, along with a value for VT, provides a basis for examining shear

tqows.

3.2.2. An eddy viscosity model

The nonlinear eddy interaction term, representing turbulent transport and

dissipation, may in general be expressed as a function of the local value ¢I 1} for tile

large eddy and of its first few derivatives (Ref. 25):

E _i(p) _(q) --._-fT1 (Oi (1), (_j(I), Wk,i_(I)' "_k,ii&(])_]

p,q= I

(3.11)

Various types of approximations to transport can be obtained as special cases of Eq.

3.11.

In particular tile commonly-employed gradient diffusion hypothesis (Ref. 26)

yields the following.
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= 6ik kd

p,q= I

(3.12)

where eij is the anlstroplc eddy viscosity.

Since the left hand side of Eq. 3.12 is symmetric with respect to i and j, the eddy

viscosity can in the most general case be a fourth order tensor. However even the

fourth order viscosity, eijkl, is known to be not satisfactory in all respects, such as the

violation of the condition of invarlance with respect to rotation of the coordinate

system (Ref. 27). Usually a second order eddy viscosity, q j, is assumed to be sufficient

to account for the anisotropic nature of an inhomogeneous turbulent flow.

It may be pointed out that the use of eddy viscosity implies an infinite velocity of

transport for the transfer of energy from large eddy interactions to subsequent

smaller eddy interactions: ....... "

The application of this approximation to curved wall boundary layers is discussed

in Refs. 3 and 4.

3.2.3. Finite velocity of transport

An alternative to the (generally employed but questioned) gradient diffusion

model is to assume that some form of "bulk convection" forms the basis for turbulent

transport (Refs. 17, 28 and 29).

Introducing anlsotropic, transport velocity scales, vii, to represent transfer of

energy from a high turbulence intensity region to one of lower turbulence intensity,

one can write as follows:

oo

p,q= I

The transport velocity scales must again be symmetric.

(3.13)
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The application of this approximation to curved wall boundary layers is discussed

in Refs. 3 and 5.

It may be pointed out that the foregoing method of relating the nonlinear term to

local turbulence intensity through the use of a finite transport scale converts the

dynamical equation into a hyperbolic one. Refs. 3 and 5 then discuss a characteristic

field velocity associated with the characteristics. Considering other assumptions

introduced in Ref. 2g. one can write the characteristic velocity in the following form:

2

where Vc and al are empirical quantities introduced when modeling diffusion of

turbulence kinetic energy and turbulence energy itself, respectively. The velocity V*

then represents the characteristic speed associated with local changes in shear stress.

It is interesting in this" connection that one can also deduce a characteristic

velocity for turbulent transport of the temperature field in a mixing layer based on

Ref. 30. The characteristic velocity becomes

II* = v2 (3.15)

where v is the constant of proportionality introduced in modeling triple correlations.

It is also equal to the turbulent normal stress. Then, assuming isotropy in transport

velocity scales, one can write

1
V* = - v21 (3. 16)

2

The role of the transport velocity scales, vii , in the transport of eddy-eddy

interactions is analogous to that of v-2 in the transport of temperature fluctuations,

but the two velocity scales are different.
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One can alsoexamine the tr£nsport of veloclty-temperature correlations.

The precise analogy between characteristic velocities for momentum and scalar

quantities such as temperature is yet to be explored. We will return to this subject

later.

3.2.4. Aubry's adaptation

The main thesis of N. Aubry (Ref. 10) is that energy transfer from mode to mode

can be modeled by a representation adapted from Heisenberg's spectral model (Ref.

23). Eventually, this model is utilized for establishing the dynamical processes

associated with the characteristic structures of turbulent shear flows; we return to

this topic in Section 3.3.

tteisenberg's model in isotropic and homogeneous turbulence is based on the

following assumption: in a given energy spectrum of turbulence, the energy transfer

to wave numbers larger than a cut-off value k may be set equal to an effective

transport coefficient uT(k, T), where T(k) is a nonlinear spectral transfer term; the

transport coefficient is a measure of the action on eddies of wave number smaller

than k. There is a notional similarity with augmentation of thermal agitation.

Aubry then introduces the assumption that one can average the influence of the

small scales on the large ones; to quote, "The smaller scales extract energy from the

larger ones by a global viscous action on each unresolved mode. '°

To proceed, one may adopt the same notation as N. Aubry: contributions less and

greater than the cut-off between the large and the small scales are denoted by

subscripts < and > respectively; an average value is indicated by < >; and

additional subscripts to the average denote ranges over which averages are obtained.

Assuming that the small scale stress tensor is again linearly proportional to the

strain rate tensor of the large scales, one can write the fol lowing.
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rij> = - 2 Vr Sij< (3.17)

where

l(ui<j+uj<,i)s,,<
(3.18)

In terms of mean and fluctuating components of velocity, U and ui, for instance,

one can set up a dynamical equation as follows, exactly as was done in Eq. 3.2:

i_< + Ui< J U) + Ui<j'uj< + ui< J ttj- <ui<duj<>

l ,( )=--P+ _ij <uk> uk> >-<<uk> uk>>>
p 3 J

+ (v + Vr) ui<_O (3.19)

which appllcs to the small wave number part.

There arise two terms in Eq. 3.19 that require some form of modeling. One of

them is combined with the pressure term. In order to calculate this, it is assumed

that the fluctuations of the kinetic energy of small scales are proportional to the rate

of loss of energy by the large scales to the small scales.

Tile other term requiring modeling in Eq. 3.19 is associated with v T. Again, it is

assumed that VW can be made proportional to the kinetic energy distribution of the

higher modes over the shear flow under consideration and a characteristic length

scale; the latter is set proportional to the ratio of kinetic energy and dissipation

energy.

It is clear that in both cases, the assumptions are the usual ones and therefore

appear as artifices that are justified by their success. A further controversy pointed
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out by J. Lumely relates to the neglect of any influence of the mean strain in Eq.

3.17. Finally, it is useful to note that in sub-grid scale modeling, P. Moin and J. Kim

(Ref. 31) introduce the following expression for the small scale stress tensor.

(3.20)

which can be compared with Eq. 3.17.

3.2.5. Developments in the use of (S, UT).

It will be recalled that in Section 3.2.1, a suggestion was made that the amplitude

parameter can be related to a factor,/3, Eq. 3.10, which is in the nature of a skewness

factor. Neither /3 nor u w are strictly "physical" quantities and we introduce the

notation S and UW to represent them as in the nature of the associated quantities.

S.K. ttong (Refs. 7, 8 and 9) has examined the possibility of simulating cilannel

flows with a model based on the LEIH utilizing S and L,T as the transport and

dissipation factors.

Tile formalism may be summarized as follows.

The mean velocity is decomposed into an ensemble average component and a

fluctuating component. Tile latter is written in terms of orthogonal functions, ¢ic"),

n= i, 2, 3 ..... Thus

OO

ui(x,t) = _ or, _bi(")(_x,t) (3.21)
n=l

.l'cki(P)dpi(u) dx_dt = O, p ;_ q, i = 1, 2, 3. (3.22)

where c_, arc random coefficients with units of velocity and are uncorrelated with one

another. Ilence, one can write the following.
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_=0

and

otrnotn = ;k (")5m.

where X(n) are all positive. Now, the ¢!n) are assumed to be orthonormal functions,

implying

,t_i (p) di)i (q) dx d! = _pq

and, further, that none of the ¢!n} is identically zero. It can then be shown that c_n

are Fourier coefficients given by

a n = ,tui(x,t) 4_/")(x,t) dx_ dt (3.23)

where i = 1.

If one considers the integral of the turbulent kinetic energy of the u 1-component

across the whole flow, one can write

l -_ d'kdt l _ h(.)
2 2

n= I

(3.24)

The n-th mode distributes tile energy in space and time according to its functional

form.

In the case of turbulent flow, a dynamical equation corresponding to the Navier-

Stokes equation becomes the following:

• ( 'ui + Uj uij + Uij uj + uiuj - ,j = - -p,i + v ui(o
P
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Introducing the orthogonal decomposition of Eq. 3.22, after some algebraic

manipulatlon, one obtains a dynamical equation for ¢I n) as follows; this is similar to

Eq. 3.8:

$]("'+ vj _j + u_j--(.) = (3.26)

where

_,.(") = _ q_i('° (3.27)

and

r" (") = - p-' oe.p /'f_(") (3.29)

It may be observed that the pressure fluctuation term, _(n}, has no restrictions other

than determinacy; in fact, one can utilize the Poisson equation simultaneously with

Eq. 3.26.

For the first mode, tile dynamical equations for ¢I n) and _(n) become the

following.

_,(') + Uj ¢_j-(')+U,j Qi_'('k_ _-!')+., v -('). J = $;,jj (3.30)
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and

,_ ' ,kj
(3.31)

Again,

p=l q=l [)_ (I))k (P)X {q)] 'h

and

(3.32)

--m

p=l q=i

(3.33)

The central problem, then, is to model tile term in Eq. 3.32 and Eq. 3.33. Either

term represents modal interactions giving rise to transport and dissipation. It is

proposed to write

wherein S and VT are in the nature of skewness and eddy viscosity. Considering S as

a structural factor involved with transport, VT is associated with damping. In general

S is close to one numerically except for the influence of inhomogeneities in flow. It

will be observed that tile skewness is associated with the nonlinear term in the

dynamlcal equation. The term itself, therefore, must not be neglected. Once the term

is retained, it becomes essential to have an additional dissipation in the form of V'T.

The method, accordingly, requires two parameters to be selected. There is no direct,

rational procedure for defining or selecting the parameters, ttowever, an indirect,

justification can be obtained and is discussed later.
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Now, considering a shear flow, such as a channel flow in which the inhomogeneity

may be considered to be confined to the y-direction, in standard Cartesian

coordinates, one can define spectral functions as follows.

(3.36)

and

7r (kl,y,k3,t) = 1 II .<,>oxp + (3.37)

A similar approach can be adopted for a two-dimensional mixing layer, which is

discussed further in Section 5.

4. RECOVERY OF CHARACTERISTIC STRUCTURES

The existence of some form of structure in turbulence has been postulated for

several decades based on various types of observations. However, studies of their roles

in different flows and of their physical structure has become increasingly fashionable

over the past fifteen years or so, as pointed out by H. Liepmann and expounded in

Refs. 32. There are obviously controversies in regard to the importance of their role,

their existence in fully-developed turbulence and in various types of shear flows and

their strength. Nevertheless in actual fluid machinery, where turbulence may not

attain a fully developed state, and in the case of mixing layers in particular, there is

reason to believe that (Kelvin-Helmholtz) instabiNty-generated large structures may

display coherence and a specific role based oil their structure and tile gradual break-

down of their structure. Regarding fluid flow machines, it is however, necessary to
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point-out that various (inherent) disturbances may in fact disorganize the structure.

The mlxing layer has, in any case, been postulated by A. Roshko (Ref. 33) to be quite

distinctive in this respect among inhomogeneous shear flows.

J. Lumley and F. R. Payne (Ref. 34) obtained the large eddy structure in the

wake of a cylinder within the premise of the theory put forward by J. Lumley, Ref.

1. It is the first accomplishment of the demonstration of (the large) eddy structure

starting from classical, statistical, structure theory of turbulence and utilizing the

most rationally-based representation of the structure. It is important to point out

that no phase information was generated in that early work and therefore nothing

was said about the coherence or the phase-relations governing ttle structures in the

mean fluid flow. In any case, the possibilities for determining a structure became

clear and A. Townsend has a critique, in proper perspective, of this approach in Ref.

16.

A method of extending the earlier analysis to the determination of coherent

structures has been outlined in Ref. 3. A modification to the shot-nolse approach of

J. Lumely utilizing a snap-shot approach has been outlined by L. Sirovlch in Ref. 20.

A modification to the recommendation in Ref. 3 has been worked out by N. Aubry,

Refs. 10 and 11. One should also note the important investigations reported by P.

Moin in Ref. 35. Finally, M. N. Glauser and W. K. George (Ref. 36) have attempted

a recovery of structures in an axisymmetric jet, utilizing experlmental results along

with orthogonal decomposltlon analysis. It is considered important to review this

body of investigations if only briefly.

4.1. Lumley's suggestion for recovery of phase information

In Section 2.3.2, the spectrum of _j has been given by Eq. 2.10. That equation

permits the determination of f to within a phase angle given by the following.
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[ ]f,_ = _b,_'_ exp iO(k) (4.1)

In other words the phase or the overlap and spacing information cannot be obtained

from second order statistics. It is then shown how the phase information can be

obtained from third order statistics,

u(t) u(t + rl) u(t + z2)

The procedure is elaborated in Ref. 3.

In order to obtain overlap and spacing, one again has to utilize higher order

correlations of g_(t). Once the phase of f has been determined, one can Fourier

transform ut(t)and the individual values of the transform can lead to obtaining the

transform of g(t)_

One point to note is that an important piece of information is required, from

experiments or empiricism, about g, the stochastic function.

4.2. P. Moin's Application to Channel Flow

The objective (Ref. 35) was to extract coherent structure details for a channel

tlow in a two-dimensional plane (x, y), y being the inhomogeneous direction normal

to the wall. The structures were assumed to be sprinkled randomly in the spanwise

direction. No attempt was made to obtain phase information. The numerical results

were compared with those from large eddy simulation model.

It is not clear how the mean flow is prescribed or obtained in tile foregoing

calculation.
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4.3. Sirovich Method

In Section 2.3.3. we mentioned briefly the recommendation of L. Sirovlch for the

use of the so-called snapshot method (Ref. 20) as an alternative to the use of a shot-

noise method utilized by J. Lumely.

The methodology depends upon the availability of sufficiently extensive

information from numerical or physical experiments in which highly resolved flows

are followed in time. A coherent structure is associated with the elgenfunctlons of the

correlation operator. The main problem then is establlshing a method for deriving

the eigenfunctions. Several aspects of the method become clear in the next section.

It may be stated that no numerical results are presented by L. Sirovlch.

4.4. N. Aubry's Approach

We continue here the discussion presented in Section 3.2.4.

D. Ruelle and F. Takens (Ref. 37) proposed a model of turbulence as a

deterministic, chaotic regime of flow reached after a small number of bifurcations,

rather than one involving indefinitely many modes. The proposal was based on a

possible connection between dynamical systems theory and turbulence. It is generally

accepted that chaotic, dissipative, dynamical systems eventually display features of a

strange attractor that is of low dimension. L. Sirovich suggests an optimal

description for the attractor and also some form of an upper bound to the dimension

of the attractor. Now, N. Aubry (working quite independently) has investigated the

question of "whether the dynamics of a complex turbulent flow can be described .....

by a finite, possibly small, number of modes". The complex turbulent flow chosen for

illustration is the wall region of a turbulent boundary layer in a channel flow, where

large scale, horseshoe shaped, structures have been shown to play an important role.

These organized, coherent structures appear in a fine-grained turbulent background.
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A.K.M.F. Hussain (Ref. 38) has stated that "the motion of coherent structures .... is

likely to be low-dimensional". The problem is to extract deterministic structures in a

description of turbulence based on the rational representation of J. Lumley.

One question, raised by L. Sirovlch, pertains to the fact that coherent structures

evolve in time. The original suggestion of J. Lumely (Ref. 2) was to construct a

coherent structure as an appropriate superposltion of eigenfunction_, albeit utilizing

higher-order statistics for calculating the coefficients. This approach is unsuitable for

determining evolving structures. L. Sirovich therefore utilizes Galerkin projection, in

addition, as stated earlier, to abandoning the shot-noise method. N. Aubry also has

utilized Galerkin projection along with proper orthogonal composition. The Galerkln

projection is an effective means of reducing truncation errors and also, leads to a set

of ordinary differential equations for the coefficients.

A significant point here is the claim to establishing '°a unique relationship between

the correlation tensor and the unsteady flow that produces it," which had been

thought impossible by B. J. Cantwell (Ref. 39).

The method is implemented by N. Aubry to determine the characteristic eddies in

three dimensions together with their temporal dynamics. The flow is considered

steady, but periodic in two directions, while being inhomogeneous normal to the wall.

An issue in the method is tile manner of prescribing the mean flow. A mean

velocity profile is obtained from a physical experiment for a fully developed channel

flow. However, this cannot be introduced into the formalism wherein one obtains,

starting from the Navier-Stokcs equations, the following for a fully-developed

channel flow:

<ulu2>,2 = - P-lP, I + PU,22 (4.2)
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and

<u]>.2 = -- P-lp,2 (4.3)

Expressing tile wall mean pressure gradient in terms of friction velocity and

integrating Eq. 4.2., one obtains

=_l x21 __(x2__H)2 (4.4)
U <utu2> dx 2 + ur x

o P

where H is the half-height of the channel and Ur, the friction velocity. N. Aubry

points out that the U-profile introduced needs to be consistent with Eq. 4.3. In other

words the velocity profile must show the interaction between the Reynolds stress and

itself. Physically, tile shear stress term is related to the intensity of the structures,

which is inversely proportional to Reynolds stress. IIowever, this raises a problem in

selecting the U-profile objectively.

It may be pointed out that both P. Moin and N. Aubry obtain the structure

based on the large eddy represented by the first model. The question of choosing and

using a certain number of modes is addressed in the next section.

4.5. Multlple-mode Analysis

J. Lumely's rational representation of turbulence can be summed up as follows:

the large eddy is that structure which has the largest mean square projection on the

velocity field. It can be defined through orthogonal decomposition of the field of

interest. Its structure can be established utilizing a dynamical equation. In defining

it, one can introduce a truncation at any low mode number; for example, the first

mode can be considered as the large eddy. On tile other hand, one may want to

include several modes. Each mode must contain the largest ainount of energy

possible, tIowever, there is no rational basis for determining the energy transfer from
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mode to higher mode. In principle, one can consider a set of dynamical equations, a

set of eigenvalue equations, which is solved to obtain eigenvalues of a_*apaq/X (n). In

practice, it is simpler to obtain the required information from physical experiment.

This procedure of utilizing data from physical experiments has been utilized by W.

K. George (Refs. 40-42) for determining coherent structures in an axisymmetric jet

mixing layer. No attempt was made to obtain phase information, and therefore, only

the local structure has been obtained.

In the axisymmetric jet studied there is stationarity with respect to time and also

periodicity and symmetry in the azimuthal direction; inhomogeneity exists in one

direction. In the inhomogeneous direction one uses orthogonal decomposition after

fitting the homogeneous directions with harmonic eigenfunctions.

A scalar two-dlmenslonal version of orthogonal decomposition has been derived:

(¢o(x,x',o_) ¢"(x',o_) dx' = X(")(_) _(")(x,_) (4.5)

The characteristic eddy is determined from the dominant eigenfunctions as

I I I0-0. \ / ,(')(x,o,) d.,
(4.6)

Experimental data are utilized for the cross spectrum.

Several modes have been superposed to examine the resulting structure. That

combination which appears most acceptable compared to experimental data is

retained. It is clear that no rational procedure is available for determining the higher

order modes or selecting a combination of them.
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We have referred to this fact earlier in Section 3.2.4. Referring to Eq. 3.8,

assuming from experimental observations that ¢11} is weak, a solution can be

constructed in the form:

_(I) (I) e2,,h(1) + . . .@i(1) -_o,/ + e¢l, i + "_2,i

where

e = a'_a_/;k {I)

(4.6)

In Eq. 4.6, the first term determines the (neutral) stability of tlle mean motion to

small disturbances. The parameter l:T can be selected on tills basis (Ref. 16).

tIowever it turns out that at least the second term must be retailed when the flow is

such that the mean velocity profile is stable with respect to small disturbances.

Now, a similar optimization can be carried out, in principle, to determine a

succession of modes; however, as stated earlier, this may not be effective.

The evolution of modes within the framework of Navler-Stokes equations can be

determined noting that Fourier decomposition of the equations leads to a triad

structure in Fourier space (Ref. 43). The triad interaction represents the nonlinear

process of energy exchange between the modes. The interaction depends upon the

triad geometry, the orientations of the amplitude vectors with respect to tile triad

plane and the phase relations among the modes. A basic study on the generation of

various modes and determination of their energy content is reported in Ref. 44.

It may be added here that W.K. George and N. Aubry also construct the

streamline pattern within a coherent structure of the flows considered by them.

Finally, one may note that several scales of interest can be constructed utilizing

the values of ¢[n).
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The scaleobtainable most directly is the averageTaylor scale(Ref. 1),

average "_ad

Based on spatial velocity autocorrelation, one can define the Taylor mlcroscale in the

form

h2= U2"/ (Ui,i) 2 (4.8)

The integral length scale can be written as

te:(_2i2)3'21f: <4.9)

where c is tile dissipation rate of energy. A time scale can then be defined in the form

Le/U i = 7to

5. A MODEL FOR A MIXING LAYER

We consider a mixing layer, as shown in Fig. 1, involving two-dlmensional mixing

of two streams of Newtonian, compressible, turbulent fluids differing in mean velocity

and temperature. The general interest is in predicting (a) rate of spreading of tile

mixing layer, (b) intermittency at the two boundaries, (c) coherent structures with

their streamline pattern and (d) critical interaction between coherent structures. Our

objective here is limited to examining a formalism of LEIH that is applicable to a

mixing layer.

5.1. Describing Equations

Two sets of describing equations for the mean flow quantities are provided in

Appendix I: (1) mass-averaged compressible flow equations (Ref. 45), and (2)
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equations with no change in mean density and neglect of denslty fluctuations as small

(Ref. 18). The latter set represents a physical case of mixing of two flows with a small

difference in temperature or concentration, and therefore of interest in addition to

being a useful test case for the application of the proposed model.

It may be pointed out that it has repeatedly been stated, for example in Ref. 47,

that density non-uniformity influences only the mean flow quantities and turbulence

is unaffected by density fluctuations in thin mixing layers. These assumptions are

equivalent to a local equilibrium approximation and can be applied, with great

computational convenience, whereby they are shown to be adequate.

5.2. Representation of turbulence

We consider two main types of representations: (1) as in earlier work, large eddies

in one group and all other eddies in another group, and (2) large eddies, energy

containing eddies and all other eddies. The latter has some resemblance to the model

of Ref. 4{}.

It is also possible to visualize yet another representation with active, inactive and

all other eddies. This is not of particular interest in the case of mixing layers.

The two representations of interest in mixing layers are discussed in Appendix II.

5.3. Temperature Field

In the given formulation, it becomes necessary to model the eddy-eddy

interactions separately with respect to velocity and temperature. Including turbulent

viscosity and heat diffusivity, this entails assigning three skewness-like factors for

velocity, temperature and correlations of the two. The Poisson equation for pressure

fluctuation is unaltered in incompressible flow.

Regarding the skewness factors, one possibility is to invoke a type of structural

similarity between velocity and temperature that has been discussed extensively in
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Refs. 48-49. In summary, the analogy suggests that

is a constant across different parts of the mixing layers provided the averaging is

done over appropriate time scales.

The possibility of using such an analogy thus rests on investigating eddy-eddy

interactions over a number of time scales starting with the time scale associated with

the generation of large scale structures, through the time scale based on a

characteristic length scale and a velocity of motion of large scale structures,

ultimately to dissipation time scale. An approach of this type is discussed in Ref. 50.

A method of incorporating such an approach into the large eddy interaction model

was under investigation at the close of the grant period.
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APPENDIX I

BASIC EQUATIONS

1. General Describing Equations

Standard terminology as in Reference 45 is employed throughout.

Considering a multi-component gas mixture involving N species and M elements,

the equation for conservation of individual species may be written as follows.

0 0 0( 0y4 .at (p y' ) + Ox k (p ukYi) = _ D axk/l + ,u,
i=1,2 ..... N (I.I)

It will be observed that a single diffusion coefficient is utilized. The last term in the

foregoing equation represents the chemical source term.

The equation for overall conservation of mass becom.s:

a
Op + __ (Puk) = 0 (I.2)
at Oxk

The conservation of momentum is given by the following:

0 0 Op 0

a5 (p u,) dr OXk (p U k Ui) dr -- Tik (I.3)axi Oxk

here p is the hydrostatic pressure, a thermodynamic variable. The viscous tensor is

given by

(I.4)
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The conservation of energy can be expressed as follows:

_ O0 (ph) +-- (pukh)
Ot Oxk

O Oh
= ___+__

Ot Oxk _ O_
m+t_ (I.5)

The mixture enthalpy, h, can be expressed by the relation

N

h = ]_, yihi

i=l

where

(1.6)

h i = Cp T + Ai (I.7)

which accounts for the variations over the range of interest in temperature and heat

content changes due to chemical transformation. The Prandtl and the Schmidt

numbers are denoted by a and Sc, respectively.

In most flow of gases involving chemical reaction, one can expect a density

change, the density variations arising due to inhomogeneities in temperature or

composition. It is then common practice to utilize Favre averaging, wherein all

quantities, except pressure, are mass-averaged. The equations based on Favre-

averaging corresponding to equations 1.1 - 1.3 and 1.5 become the following in the

absence of variation with time.

Oxk (p uk Yi) = -- D -- - pu[ Yi + wiOxk Oxk

-- (p uk) = 0
Oxk

(1.8)

(1.9)
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0 (PUk Ui ) Op "_ (Tik pIg[Ui# )

Ox_ Ox, Oxk
O. lO)

o _°(_°,_,.,.)Ox---_k(puk h ) = Oxk # Oxk
(I. 11)

It mac be noted that the equation of state

u y,

P = O Ro T _.1-_i
i=I

(I. 12)

becomes

U l

p-=Ro ___ (_ TY_+ pT"Y,.")--
i=l Wi

(I. 13)

When the molecular weights of different species do not vary greatly, one can write

= yR T" (I.14)

where R is the mass-based gas constant applicable to the system under consideration.

It has now become well recognized that several difficulties arise in the course of

Favre-averaging. Such difficulties pertain in general to the various nonlinear terms

that arise in the describing equations. Unfortunately, there is no clear method of

resolving the difficulties on a reasonably universal basis even with an appeal to

experimental results. Yet another problem in Favre-averaging is that the molecular

transport terms need to be modeled specifically for the Favre-averaged form of the

equations, and such models cannot be the same as in the original equations.
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2. Simpl!fied Equations with No Variations in Density

We consider in the following a particular case of a flowfield with temperature (or

concentration fluctuations) in which both the flow Mach number and the density

variations are negligibly small.

Equations for mean and fluctuating quantities may then be written as follows.

Mean flow

aU_ aUi Op auiuk 02ui
--+ u_--= + v-- 0.15)
Ot oxk Oxi Oxk Ox_,

Mean temperature

OT cgT Oui 0 02T
--+ Uk .... + K--
Ot cgxk i}x k Ox_

Intensity of velocity fluctuations

(I. 16)

-- + Uk +-- + = - uiuk -- + vui --
at _ axk -2 ax_ axZ.

(I. 17)

Variance of temperature fluctuations

O -_ + Uk a +-- = -Ouk aT a 2

at Oxk axk axk Ox_ \OxJ
(I. 18)
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Mean heat flux

ia (Ou_)+uk a --
at axk (°ui)

a m

+ :-- (OUiUk)= -- uiuk -- --
_xk

or  oV,_oOp
Oxk axk axi

( oo ov,' o.,ooO Kui-- + vO - (v+K)----
+ ax---_k\ axk Ox# ax_ Oxk

(I. 19)

It may be noted that pt represents the pressure fluctuation. Further, it may be of

interest to observe that the second term on the right hand side of Equation (I.17)

represents the rate of destruction of temperature fluctuation by molecular diffusion.

Fluctuating flow

Oui Oui 10p" OUi 0 02ui (I.20)-- + Uk -- = uk - -- (uiuk - uiuk) + v --
at Oxk p Oxi Oxk axj Ox2

Fluctuating pressure governed by Poisson equation

O2P 2 OUi Oui O2.... + -- (uiuj - uiuj)
Ox] Oxk Oxk OxkOxj

(I.21)

Fluctuating temperature

..... -- O2T00+ Uk O0 0 (u,O-u,O) +K--
at Oxk Oxj Ox'_

(I.22)
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APPENDIX II

APPLICATION TO MIXING LAYER

We consider the mixing layer studied originally by J. Laufer (NASA Report 1174,

1954) and H. Liepmann. The layer is formed by a single stream flowing over a

stationary fluid. In the problem considered here, it is assumed that the stationary

fluid is at a higher temperature then the flowing fluid, while both fluids are

incompressible and at constant densities.

The plan of attack has been as follows: (a) to obtain the mean velocity field and

the shear stress distribution in the mixing layer; (b) to invoke spectral analogy

between velocity and temperature fields and thereby establish the mean temperature

field and temperature variance distribution; and finally, to predict the velocity-

temperature correlation distribution which could be checked against experimental

results. It may be said at the outlet that no calculations could be completed within

the project period.

II.1. Formulation of the Problem.

Referring to Appendix I, Eqs. 1.15, 1.20 and 1.21 can be solved to obtain mean

flow, turbulence intensity of velocity of fluctuations and Reynolds stress. The

modelling required pertains to eddy-eddy interactions. Eq. 1.17 can be utilized to

check the modelling.

In Eq. 1.18, the analogy between velocity and temperature intensities can be

invoked. One then solves Eqs. 1.18, 1.22 and 1.16 to obtain uR8 and mean

temperature as functions of xj. Returning to Eq. 1.22 it is possible to establish the

skewness factor and turbulent conductivity parameter that are compatible with the

analogy between velocity and temperature.

Finally, it is possible to extract the pdf of velocity and temperature fluctuations
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and compare them with measured data.

In analyzing the flowfield one may start with assuming that the flowfield is

homogeneous in the spanwise direction and then proceed to a formulation in which

the flowfield is fully inhomogeneous. Such a procedure is especially useful in

extracting physical structures.

It may be pointed out that the entire formulation is based upon concentrating

attention on the largest eddy represented by the first mode and a few wave numbers

in the overall spectrum. Therefore, the analogy between temperature and velocity

intensities may in fact be partially valid. This may cause errors in the individual

contributions of production, dissipation and transport to the stresses and the

velocity-temperature correlations. A multi-modal analysis, and on the other hand,

requires some experimental input.

H.2. Orthogonal Decomposition and Spectral Analysis

The orthogonal decomposition and spectral analysis can be illustrated utilizing the

case of velocity. As stated elsewhere, the instantaneous velocity can be written in

terms of a time-mean value and its fluctuation:

U_=U, +u_ (II+i)

where the velocity fluctuation can be represented in a series in terms of orthogonal

functions:

u,(x.t) = E ot.(t) ¢i(")(x) n = 1. 2. 3 .....

rl=l

The random coefficients, c_n(t), are uncorrelated with ea_.h other. Hence,

(11.2)
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a,_ot_ = k_ (t) • _mn, b,_n = kronecker delta, (I1.3)

the overbar representing an ensemble average. Assuming that the determinate ¢!n)

are orthonormal functions

.I¢ifP)¢icq)dx = 8pq (II.4)

It then follows that the two-point velocity correlation, Rij , can be expressed in the

form, namely:

Ri) (x,x';t) = _ k_ ok: n) (x) ° Oj fn) (_x') 01.5)

n=l

Now, one can set up dynamical equations for the n th mode by an appeal to

Navier-Stokes equations. After some manipulation, one obtains the following

dynamical equation.

-_t + U) --Oxj + Oxj-- - q=! [h(n)h(P'h(q)] _h _i(p' _j(q} "_Xi +pOF 02_i(n)04
(II.6)

where

_'i (') = _ q_i('0 and _'(") =
p _f_-(n)

Also, the Poisson equation for pressure fluctuation becomes the the following.
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_ __ 0 232r " (") 23_ 3_'_ ") +

Ox] Oxk _xj OxkOh

(II.7)

The continuity conditions yields

3_)¢n) -- 0

Oxj

(II.8)

Eqs. II.6-II.8 can be specialized to the first mode, n = 1, considered on the large

eddy.

The eddy-eddy interactions are then modelled as follows.

(II.9)

where

--=S

Xl
(II. 10)

the skewness factor of the random coefficient; and t_ is a form of damping coefficient

referred to as eddy viscosity for convenience.

II.l.1. An Alternative Formulation

At this stage, we have also considered an alternative formulation. It consists in

including two types of eddies, one that may be referred to as large and the other as

small, it is assumed that the large and the small eddies are sufficiently separated.
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The velocity fluctuation is then written in the following form.

ui(x,t) = vd_i (x,t) + 5'dp/(x_,t) (II.1 l)

The two deterministic functions are orthogonal in the (x,t) space of each other. The

random coefficients do not have any correlations whatsoever between them, that is

55 p =0

The Reynolds stress tensor then becomes

upj = 52 4,_4,j + 5 '2 6/_/: (4-J_2 40 (5 ,2 6j) (II. 12)

The approximation is an important one to proceed further.

The eddy-eddy interactions again involve a skewness factor and an eddy viscosity.

The second-order eddy viscosity tensor % is written in the following form. Defining

525 , 55 _2

SI= ; $2=

we write

(II. 13)

There are some complex arguments in setting up Eq. (II.13). In any case, this

approach has not been developed further.
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II.1.2. Temperature Fluctuations

In a manner similar to the foregoing, it is also possible to decompose the

temperature fluctuation, _ and the correlations uiS. Thus

0 (x,t)= ]_ /3.(t)3'

n=|

(.) n = 1, 2, 3 ..... (II. 14)

and

uiO = ]_a o. 4_i(")(x) 3"(") (11.15)

n=l

A dynamical equation can also be constructed for 0 corresponding to Eq. II.6.

However, as stated earlier, it is proposed to invoke a similarity between temperature

and velocity intensities.

II.1.2. Spectral Decomposition

Assuming that the flowfield is homogeneous in the z-direction, spanwise with

respect to the developing mixing layer, one can construct the spectrum as follows. It

may be observed that a more general formulation in which the flowfield is

inhomogeneous in all three directions is easily set up formally. However, it is

worthwhile starting with the simpler formulation.

1 f _ I)(_/(l)(k3,' x,y,z,t) = _ _i ( (x,y,z,t) exp(-ik3z) dz
(II. 16)

where k 3 is the (scalar) wave number corresponding to the z-direction. For any z,

then, turbu!ence contains various length scales whose sizes are proportional to 1/ke.

The spe_rflm, ¢!1) (k3), is the integrated value of the first mode, ¢!1) (z),



46

corresponding only to 1/ks, over the entire homogeneous field, z.

write

Inversely, one can

_bitl)(x,y,z,t) = dpi(l)(k3; x,y,z,t) exp(ik3z) dz (II. 17)

The spectrum is a complex variable which may be divided into real and imaginary

parts as follows.

_bi = (_bi)R + i(_i)t

Proceeding similarly with respect to ¢r and _, one can write

_l = Pt + [P2

= P3+ ;P,

;_3= P5 + [e6

_" = P7 + [P8

o = P9 +/'e_0 OI.18)

It is important to recognize here that, while the flowfieldis assumed to be two-

dimensional, with homogeneity being imposed in the third direction,turbulence is

treated correctlyas being three-dimensional.

Various quantities such as uiuj, u 2, qZ, _-_/_, orientation of principal axes and

anisotropy can be expressed in the _ t)mixed (x,y, k3; space. :....Similarly, the various

turbulence quantities related to temperature, 02, u i 0, can also be expressed in spectral

space.
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II.2. Analogy Between Temperature and Velocity

The analogy is expressed in the following form

where _ is in general of 0(1), but is taken as equal to unity in the first instance.

As stated earlier, q2 is expressed in spectral form in the first instance, while

simultaneously establishing the mean flow distribution. The spectrum of 82 can be

related to the spectrum of q2 but only with a knowledge of cYr//c_, thus, it is

necessary to solve Eqs. 1.18, 1.22 and 1.16 simultaneously to determine mean

temperature and Uk 8. It may be pointed out that in accomplishing this in practice, it

is useful to equate 0T//Oy to _/0y and thus use the spectrum of q2 as the spectru_

of 82. One can then proceed to modify the analogy thro.lgh successive iterations.
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